社交媒体帖子包含有关医疗条件和与健康相关行为的潜在有价值的信息。生物重建VII任务3专注于通过识别推文中的药物和膳食补充剂的提及来挖掘这些信息。我们通过精细调整多个BERT样式语言模型来执行此任务以执行令牌级分类,并将它们组合成集合以生成最终预测。我们最好的系统由五个Megatron-Bert-345M型号组成,在看不见的测试数据上实现了0.764的严格F1得分。
translated by 谷歌翻译
生物重建VII Track-2挑战包括命名实体识别,实体链接(或实体 - 归一化),主题索引任务 - 与实体和主题限制为这项挑战的化学品。命名实体识别是一个完善的问题,我们通过基于Bert的生物群体模型实现了我们的最佳性能。我们将基于BERT的方法扩展到实体链接任务。在预先预订Biobert的第二阶段,通过称为自对准预先训练(SAP)的度量学习损失策略,我们将基于其SAP-Biobert Word Embeddings之间的余弦相似性链接实体。尽管我们的命名实体识别实验取得了成功,但我们发现化学指数任务一般更具挑战性。除了传统的NER方法之外,我们还尝试使用基于新颖的文本或“提示”方法的命名实体识别和实体链接,该方法使用生成语言模型,例如T5和GPT。我们通过这种新方法实现了令人鼓舞的结果。
translated by 谷歌翻译
在Bircocrive VII的Track-1中,要求参与者识别药物/化学品和蛋白质之间的相互作用。提供每个药物/化学和蛋白质的内部名称实体注释,必须自动预测14个不同的相互作用中的一种。对于此关系提取任务,我们尝试两种基于BERT的句子分类方法,以及使用T5模型的更新文本到文本方法。我们发现基于BERT的模型一般表现更好,我们的生物综太基模型实现了所有指标的最高分,实现了0.74 F1得分。虽然我们的小说T5文本到文本方法没有表现出基于BERT的大多数模型,但它表现出在类似数据上培训的那些,呈现出有希望的结果,实现0.65 F1得分。我们认为,与关系提取的文本文本方法有一些竞争优势,并且有很多研究进步的空间。
translated by 谷歌翻译
System identification, also known as learning forward models, transfer functions, system dynamics, etc., has a long tradition both in science and engineering in different fields. Particularly, it is a recurring theme in Reinforcement Learning research, where forward models approximate the state transition function of a Markov Decision Process by learning a mapping function from current state and action to the next state. This problem is commonly defined as a Supervised Learning problem in a direct way. This common approach faces several difficulties due to the inherent complexities of the dynamics to learn, for example, delayed effects, high non-linearity, non-stationarity, partial observability and, more important, error accumulation when using bootstrapped predictions (predictions based on past predictions), over large time horizons. Here we explore the use of Reinforcement Learning in this problem. We elaborate on why and how this problem fits naturally and sound as a Reinforcement Learning problem, and present some experimental results that demonstrate RL is a promising technique to solve these kind of problems.
translated by 谷歌翻译
Wireless Sensor Network (WSN) applications reshape the trend of warehouse monitoring systems allowing them to track and locate massive numbers of logistic entities in real-time. To support the tasks, classic Radio Frequency (RF)-based localization approaches (e.g. triangulation and trilateration) confront challenges due to multi-path fading and signal loss in noisy warehouse environment. In this paper, we investigate machine learning methods using a new grid-based WSN platform called Sensor Floor that can overcome the issues. Sensor Floor consists of 345 nodes installed across the floor of our logistic research hall with dual-band RF and Inertial Measurement Unit (IMU) sensors. Our goal is to localize all logistic entities, for this study we use a mobile robot. We record distributed sensing measurements of Received Signal Strength Indicator (RSSI) and IMU values as the dataset and position tracking from Vicon system as the ground truth. The asynchronous collected data is pre-processed and trained using Random Forest and Convolutional Neural Network (CNN). The CNN model with regularization outperforms the Random Forest in terms of localization accuracy with aproximate 15 cm. Moreover, the CNN architecture can be configured flexibly depending on the scenario in the warehouse. The hardware, software and the CNN architecture of the Sensor Floor are open-source under https://github.com/FLW-TUDO/sensorfloor.
translated by 谷歌翻译
Generative models have been very successful over the years and have received significant attention for synthetic data generation. As deep learning models are getting more and more complex, they require large amounts of data to perform accurately. In medical image analysis, such generative models play a crucial role as the available data is limited due to challenges related to data privacy, lack of data diversity, or uneven data distributions. In this paper, we present a method to generate brain tumor MRI images using generative adversarial networks. We have utilized StyleGAN2 with ADA methodology to generate high-quality brain MRI with tumors while using a significantly smaller amount of training data when compared to the existing approaches. We use three pre-trained models for transfer learning. Results demonstrate that the proposed method can learn the distributions of brain tumors. Furthermore, the model can generate high-quality synthetic brain MRI with a tumor that can limit the small sample size issues. The approach can addresses the limited data availability by generating realistic-looking brain MRI with tumors. The code is available at: ~\url{https://github.com/rizwanqureshi123/Brain-Tumor-Synthetic-Data}.
translated by 谷歌翻译
This paper presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments -- outdoors, from urban to woodland, and indoors in warehouses and mines - without changing parameters. Our method integrates motion compensation within a sweep with one-to-many scan registration that minimizes distances between nearby oriented surface points and mitigates outliers with a robust loss function. Extending our previous approach CFEAR, we present an in-depth investigation on a wider range of data sets, quantifying the importance of filtering, resolution, registration cost and loss functions, keyframe history, and motion compensation. We present a new solving strategy and configuration that overcomes previous issues with sparsity and bias, and improves our state-of-the-art by 38%, thus, surprisingly, outperforming radar SLAM and approaching lidar SLAM. The most accurate configuration achieves 1.09% error at 5Hz on the Oxford benchmark, and the fastest achieves 1.79% error at 160Hz.
translated by 谷歌翻译
这项研究是有关阿拉伯历史文档的光学特征识别(OCR)的一系列研究的第二阶段,并研究了不同的建模程序如何与问题相互作用。第一项研究研究了变压器对我们定制的阿拉伯数据集的影响。首次研究的弊端之一是训练数据的规模,由于缺乏资源,我们的3000万张图像中仅15000张图像。另外,我们添加了一个图像增强层,时间和空间优化和后校正层,以帮助该模型预测正确的上下文。值得注意的是,我们提出了一种使用视觉变压器作为编码器的端到端文本识别方法,即BEIT和Vanilla Transformer作为解码器,消除了CNNs以进行特征提取并降低模型的复杂性。实验表明,我们的端到端模型优于卷积骨架。该模型的CER为4.46%。
translated by 谷歌翻译
单个异常行为因人群的大小,上下文和场景而异。当检测,跟踪和认可异常行为的人时,诸如部分阻塞,模糊,大数字异常行为和摄像机观看之类的挑战发生在大规模的人群中。在本文中,我们的贡献是双重的。首先,我们介绍了一个注释和标记的大规模人群异常行为hajj数据集(hajjv2)。其次,我们提出了两种混合卷积神经网络(CNN)和随机森林(RFS)的两种方法,以检测和识别小型和大型人群视频中的时空异常行为。在小型人群视频中,对Resnet-50预训练的CNN模型进行了微调,以验证空间域中的每个帧是正常还是异常。如果观察到异常行为,则使用基于运动的个体检测方法基于角链光流的大小和方向来定位和跟踪具有异常行为的个体。大规模人群视频中使用了Kalman过滤器,以预测和跟踪随后的帧中检测到的个体。然后,将均值,方差和标准偏差统计特征计算出来并馈送到RF,以对时间域中的行为异常行为进行分类。在大规模的人群中,我们使用Yolov2对象检测技术微调Resnet-50模型,以检测空间域中行为异常的个体。
translated by 谷歌翻译
Scene understanding is essential in determining how intelligent robotic grasping and manipulation could get. It is a problem that can be approached using different techniques: seen object segmentation, unseen object segmentation, or 6D pose estimation. These techniques can even be extended to multi-view. Most of the work on these problems depends on synthetic datasets due to the lack of real datasets that are big enough for training and merely use the available real datasets for evaluation. This encourages us to introduce a new dataset (called DoPose-6D). The dataset contains annotations for 6D Pose estimation, object segmentation, and multi-view annotations, which serve all the pre-mentioned techniques. The dataset contains two types of scenes bin picking and tabletop, with the primary motive for this dataset collection being bin picking. We illustrate the effect of this dataset in the context of unseen object segmentation and provide some insights on mixing synthetic and real data for the training. We train a Mask R-CNN model that is practical to be used in industry and robotic grasping applications. Finally, we show how our dataset boosted the performance of a Mask R-CNN model. Our DoPose-6D dataset, trained network models, pipeline code, and ROS driver are available online.
translated by 谷歌翻译